

Renew Production of Depleted Oil Wells. CO₂ Huff `n Puff Well Stimulation Increases Oil Recovery.

Stimulate depleted wells	Huff `n Puff is a proven single-well stimulation method that can dramatically increase production from stripper, depleted or low-pressure oil wells. Since the early 1990s, Linde has deployed Huff `n Puff technology to inject carbon dioxide (CO_2) into depleted wells, with results of incremental oil production. Studies have shown CO_2 Huff `n Puff can increase oil recovery, boost short-term production, and provide important information on injectivity and pressure communication with adjacent wells. ¹				
How it works	Linde's Huff `n Puff trailer-mounted pumping package, equipped with pump, operator's room, well- piping storage and fuel tank, injects liquid CO_2 at predetermined pressure into the well hole at immiscible conditions. The CO_2 is shut-in according to bottom-hole pressure, then flowed back to the surface – usually with a dramatic increase in oil production. The injected CO_2 causes oil to swell, lowering its viscosity and interfacial tension. Energy stored in the CO_2 works as a drive mechanism to move fluids to the producing wells.				
Why Huff-n-Puff	Huff `n Puff is the ideal, affordable solution for depleted single wells that are not yet ready for refracturing. For significantly less than the cost of a refracture, Huff `n Puff provides energy to give hydrocarbons in low-pressure zones the necessary lift to get them flowing to the wellbore. When subjected to normal well stimulation pressures, CO_2 exhibits a hydrostatic head equal to or greater than fresh water, lowering treating pressures and horsepower costs.				
Benefits	EOR well treatment & pilot floods, remove water, frac hit mitigation				
Unit specification	Minimum output pressure: Maximum output pressure: Minimum Flow rate*: Maximum Flow rate:	300 psig 2400 psi 0.5 bpm 3 bpm			
	Maximum operation temperature (Heater):	200°F			
Linde for CO ₂	*varies with discharge pressure As the world's leading industrial gases compar provides high quality CO ₂ on a national scale, y for oil and gas customers in every major basin our team of highly trained field engineering ar	ny and the largest supplier of CO ₂ in North America, yet with local service. We provide energized fluid so in North America, and back that up with field suppo nd pump specialists.	Linde Iutions ort by		

¹ Mohammed-Singh, L., Petronin, and Singhal, A.K. and Sim, S., Alberta Research Council. 2006. Screening Criteria for Carbon Dioxide Huff `n Puff Operations. Paper SPE 100044 presented at the SPE/DOE Symposium on Improved Oil Recovery, Tulsa, OK, 22-26 April. Safety There is no higher priority in Linde than the safety of people, property and the environment. Managing risks is a vital component in achieving our goal of zero accidents and achieving our vision: "At Linde we do not want to harm people or the environment." Linde has performed comprehensive risk assessments to evaluate and determine the necessary safeguards to protect our customers, contractors and employees. These safeguards are designed into our equipment and work procedures.

Linde offers the following recommendations and guidelines based on two decades' experience with Huff `n Puff well stimulation.

TShut-in		Low Energy Reservoirs	Moderate Energy Reservoirs	High Energy Reservoirs		
	nsi	00</th <th>400-1.000</th> <th>1 000-2 400</th>	400-1.000	1 000-2 400		
	Shut-in	5-8 days	10-14 days	15-30 days		
		Produce well as soon as	A good deal of swelling	High pressure realizes a		
	Comments	evidence exists that water or	takes place at this pressure	large oil swelling benefit		
	connents	oil flowed back to the wellbore		when Ω_{2} is introduced		
Well selection guidelines	 The well should be mechanically sound; tubulars in the well should be in good shape and recently tested. The well head should be rated to the corresponding treatment pressure. Wells with evidence of thief zones and extensive fractures are not good candidates for Huff `n Puff. Confinement of CO₂ around the well bore is paramount to a successful job. Oil wells with good initial production rates are preferred. Current oil production rate is not particularly important, as long as total fluid rate is high. 					
Production equipment requirements	 → For non-producing wells, turn well on until CO₂ injection has started. This tests the existing production equipment prior to injection. → Candidate wells should be equipped with a pumping system that does not use casing gas for fuel. CO₂ makes the casing gas incombustible. → For wells with a rod pump, a gas anchor is recommended. Otherwise, a gas-tolerant pump can be used, or the pump can be positioned below the perforations. 					
CO ₂ injection guidelines	 Pressure-test the casing before CO₂ injection. Test the stuffing box for anticipated tubing pressure during injection. Inject CO₂ down the annulus with pump in place; this preserves the well for pump installation after CO₂ is in the formation. If using injection string, position compression-set or lock-set packer as close to the perforations as possible. The backside should be filled with fluid prior to injection and casing pressure monitored throughout injection to test for packer leaks. 					
Talk to Linde	We'll help you determine if Huff `n Puff is the right technology for your wells, design the treatment and operate the stimulation to renew production from depleted wells. Learn more at www.linde-gas.com.					
Additional references	Wells Stimulated by Huff-n-Puff: SPE 15502-PA – An Evaluation of CO ₂ Huff 'n Puff Tests in Texas SPE 15501-PA SPE 27656 EERC Williston Basin Huff 'n Puff					

Linde AG Gases Division, Carl-von-Linde-Strasse 25, 85716 Unterschleissheim, Germany Phone +49 89 31001-0, info@linde-gas.com, www.linde-gas.com